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A B S T R A C T

In risk analyses, two components are taken into account: (1) hazard analysis, including susceptibility and
temporal occurrence, and (2) consequence analysis, including characterization of elements at risk (EaRs) and
their vulnerability. This study focused on characterization of EaRs, in which items are spatially displayed and
impacted by natural events. Several methods can assess these EaRs through expert or engineering approaches.
Among the expert approaches, the multicriteria method is more flexible and allows integration of a wide range of
information in order to characterize and discretize different EaRs. Traditionally, the mapping and criteria ac-
curacy of EaRs is the same at all spatial analysis scales, while the hazard accuracy changes according to the
spatial scales. Therefore, we propose an approach based on the selection of different information/criteria among
several private or open access multiple geographical databases to adapt the mapping and criteria accuracy of
each EaR according to the hazard analysis spatial scale. After harmonizing the different databases and merging
them under GIS, a single database per work scale is created through a specific procedure with interoperability of
results between scales. Thus, the number of criteria used to describe these EaRs will depend on the scale of work
and the spatial scale of the analysis. To develop and test the transposability of this method, three experimental
coastal study sites subject to several hazards (multirisk) have been selected in Normandy (France) with error
estimations ranging between 10% and 20%. Subsequently, these data can be integrated into risk and multirisk
analyses.

1. Introduction

In coastal environments, the interaction between nature and socie-
ties is particularly high. For sustainable management of societies, risk
and more specifically multirisk analyses are carried out and regularly
updated due to global change (climate change and land use evolution).
Risk analysis is a combination of hazard and consequence assessments,
whereas multirisk analysis is a combination of several risks.
Consequences are the result of an exposed element, called an element at
risk (EaR) by the scientific community, and its vulnerability to a hazard.
In this study, we focus specifically on characterization of EaRs that refer
to physical injuries or structural or functional impacts that can be
spatially displayed (Birkmann et al., 2013; Blaikie, Cannon, Davis, &
Wisner, 2014; Cutter et al., 2008; Timmerman, 1981; UNISDR, 2017).
Usually, EaRs are only considered inside hazard areas. However,

potential overextension due to uncertainties in the evolution process
require consideration of EaRs outside current hazards areas (Gallina
et al., 2016; Papathoma-Köhle, Neuhäuser, Ratzinger, Wenzel, &
Dominey-Howes, 2007).

Two main approach are commonly used to assess EaRs in a territory:
engineering and expert approaches. Different engineering approaches
are available, including curve vulnerability analysis, which provides
precise descriptions and absolute values of the loss and potential da-
mage depending on the hazard (Li et al., 2016; van Westen, Castellanos,
& Kuriakose, 2008). However, these methods involve a huge amount of
data that leads to an in-depth analysis that cannot be replicated ev-
erywhere (Petrucci & Gullà, 2010). Among the expert approaches,
methods such as ranking systems are commonly used in French docu-
ment planning due to their swift implementation potential and low data
requirements (Malet, Thiery, Maquaire, & Puissant, 2006; MATE/
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METL, 2016). However, the subjectivity in the choice of variables in-
duces difficult comparisons of the results (Kappes et al., 2012). Con-
sequently, a multicriteria method has been developed to reduce the
uncertainties involved in the use of ranking methods (Malet et al., 2006;
Puissant, Van Den Eeckhaut, Malet, & Maquaire, 2013). This method
consists of assessment using criteria and a weighting system(s) index
(Carlier, Puissant, Dujarric, & Arnaud-Fassetta, 2017; Puissant et al.,
2013). The main advantage of this method is its flexibility, which al-
lows adaptation to the number of criteria and databases used to de-
scribe EaRs (Carlier et al., 2017; Puissant et al., 2013; Reghezza-Zitt &
Rufat, 2016). However, the number of criteria used and their spatial
accuracies must be consistent with the spatial scale analysis.

Based on this multicriteria method (expert approach), two main
objectives are highlighted to enhance EaR analysis using multiple scale
analysis methods and geographical databases.

The first objective is to propose consistent accuracy of EaRs in terms
of mapping and criteria integration according to the spatial scale ana-
lysis. The following scales are drawn from scales used in hazard ana-
lyses (Van Westen, 2000; van Westen et al., 2008): (1) small-scale
analysis (Carpignano, Golia, Di Mauro, Bouchon, & Nordvik, 2009) in
the range of 1:100,000–1:250,000, which is used by regional collectives
for strategic planning (MATE/METL, 2016), (2) medium-scale analysis
in the range of 1:25,000–1:50,000, which is preferred for identification
of critical facilities (Kappes et al., 2011; van Westen et al., 2014), (3)
large-scale analysis (1:10,000–1:25,000), which is used for character-
ization of infrastructures, such as buildings or networks (Carlier et al.,
2017; Puissant et al., 2013), and (4) local-scale analysis
(1:2000–1:10,000), which provides more detailed information about
the structural components of infrastructures, such as building materials
and the date of construction (Chen et al., 2016; Kappes et al., 2012). In
this study, we consider scales ranging from medium to local-scale
analysis. Beyond the medium scale, EaRs are not considered accurate.
From these different scale analyses, we used multiple geographical
databases (GDBs) to characterize criteria and describe EaRs.

The second objective concerns the acquisition and harmonization of
multiple databases to assess EaRs and their criteria with a coherent
degree of detail. The mapping accuracy and criteria integrated to de-
scribe these EaRs depend of\n the spatial analysis scale (see above). At
the global scale, the use of remote sensing is privileged; however, at the
medium to large scale, the use of GDBs must prevail. Three types of
GDBs are identified: (1) GDBs provided by institutions under condi-
tions, (2) GDBs originating from volunteered geographical information
(VGI), which is an open data format, and (3) archive documents
available under conditions that require digitalization (Bol, Grus, &
Laakso, 2016; Foody et al., 2015; Olteanu-Raimond et al., 2017). At the
local scale, these databases are merged with field data acquisition or
photointerpretation (Papathoma-Köhle et al., 2007; Lissak, 2012;
Puissant et al., 2013; Hénaff & Philippe, 2014). Difficulties associated
with these different databases are related to harmonization and ver-
ification of these data and their integration into data warehouses.

Consequently, the main challenge is defining EaRs and their criteria
at different analysis scales using multiple GDBs. Multiple EaR scale
descriptions and characterization are lacking in risk analyses. These
terms have been defined at only one analysis scale and then zoomed in
(or vice versa), and thus the accuracy of the EaRs is the same at a local
or watershed scale. Furthermore, various EaRs that are incomparable
are taken into account in the same analysis, such as biological areas and
building functions. The development of GDBs has allowed identification
of different EaRs at different scales, but different datasets must be
merged to obtain adequate accuracy after verifying their reliability. The
use of multiple GDBs will provide a better assessment of EaRs at the
medium and large scales. At the local scale, field data acquisition is
leading to identification of the intrinsic characteristics of buildings.
Thus, the accuracy (spatial and attribute) varies according to the ana-
lysis scale.

In the first part of this paper, we perform a bibliographical synthesis

to identify EaRs and the criteria used in different risk analysis contexts.
In second part, based on this synthesis, we define a set of criteria to
characterize EaRs at each spatial analysis scale. In the third part, two
data integration models are calibrated for EaR assessment at medium
and large scales and from the use of multiple GDBs. Then, these models
are validated by field observation. In the fourth part, transposition
models are performed at two other study sites in the same region. The
fifth part shows the integration model results and discusses the adapt-
ability of the models to other study sites and the possibility of updating
the results obtained at different scales.

2. Methods

The proposed method consists of the following steps: (1) a review to
define a different set of criteria according to different hazard and risk
analyses, (2) the attribution of criteria for each of the three scale ana-
lyses according to the review, (3) an inventory of existing GDBs, which
is necessary for the establishment of these criteria, and finally (4)
creation of two integration models.

2.1. Towards a review to define EaRs for different hazard categories

To propose consistent criteria for a multistage EaR assessment and
different types of risk, existing methods must be reviewed. In our case,
three types of risks are taken into consideration: (1) flood risk analysis
involving marine and continental flooding, (2) landslide risk analysis
involving continental and coastal landslide hazards, and (3) multi-ha-
zard risk analysis involving concomitance and cascade effects according
to current hazards at the three study sites. In our study area, other
hazards, such as collapse or seismicity, are less significant in terms of
damage than hydro-gravitational hazards. At least three or more multi-
criteria methods were developed for single hazard analysis with cor-
responding analysis scales ranging from 1:50,000 (medium scale) to
1:2000 (local scale). Thirteen methods were reviewed, representing 21
authors (Table 1).

Of the five different flood analysis methods (eight authors) and
fifteen identified criteria, nine involved building analyses. Among these
criteria, the most important is related to the functions (Kubal, Haase,
Meyer, & Scheuer, 2009; Meyer, Haase, & Scheuer, 2009a, b; Scheuer,
Haase, & Meyer, 2011; Vojinovic et al., 2016) and the number of floors
(Eckert, Jelinek, Zeug, & Krausmann, 2012; Hénaff & Philippe, 2014).
The secondary criteria used are the type of urbanized area (i.e., urban
centre, residential area, etc.) and the type of natural surface (Camarasa
Belmonte, López-García, & Soriano-García, 2011; Meyer et al., 2009a,
b; Kubal et al., 2009; Scheuer et al., 2011).

Considering five different landslide risk analysis methods (Table 1),
fifteen criteria were identified to characterize the EaRs. Among them,
nine focused on building analysis to define their functions, including
the number of floors, construction materials and age (Bianchini et al.,
2017; Carlier et al., 2017; Lissak, 2012; Maquaire et al., 2004;
Papathoma-Köhle et al., 2007; Puissant et al., 2013; Uzielli et al., 2015).
Similar to flood risk analyses, other common criteria used include the
urbanization type and agricultural and natural surfaces (Bianchini
et al., 2017; Cascini et al., 2013).

For the multi-hazard analysis, three different methods (Table 1)
considered nine criteria to characterize the EaRs. Among them, eight
criteria concerned building analyses to define their functions, including
the number of people, number of floors and surroundings (Chen et al.,
2016; Godfrey et al., 2015; Kappes et al., 2012; van Westen et al.,
2014). The EaRs and criteria for all of these methods are described in
Fig. 1.

The cross-analysis of twenty-one identified criteria (floods, land-
slides and multi-hazards) highlights buildings as the most important
component, representing 60% of the total number of criteria.

Among the 13 methods, the criteria most commonly used to char-
acterize buildings are as follows:
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- the function within the study site (economic, administrative, cul-
tural, etc.) (7 occurrences);

- the number of floors (7 occurrences);
- the construction materials (5 occurrences); and
- the surroundings (5 occurrences).

The secondary criteria taken into account are as follows:

- the type of urbanized areas (7 occurrences) and
- the natural surfaces (6 occurrences).

The third criteria taken into consideration are as follows:

- the type of agricultural surfaces (4 occurrences);
- the number of people by building (4 occurrences); and
- the type of transport network (3 occurrences).

Criteria with fewer than two occurrences are considered non-re-
presentative components, such as the transport network material
(Vojinovic et al., 2016) or building foundation type (Godfrey et al.,
2015).

For each paper analysed, two patterns are noticeable in the choice of
different criteria. For the first pattern, authors take all components of
the territory into consideration, including natural surfaces, network
transport and buildings (Bianchini et al., 2017; Carlier et al., 2017;
Puissant et al., 2013). The weighting of criteria places the EaRs con-
sidered non-significant in the background with low weights. For the
second identified pattern, the authors focus on only a few elements in

the territory, such as buildings with different descriptions (Chen et al.,
2016; Godfrey et al., 2015; Kappes et al., 2012; van Westen et al.,
2014). This approach allows analysis of different criteria with the same
importance in the index weight. However, it prevents taking into ac-
count the different constraints present at the study site. The method
proposed in this paper takes into account these two different ap-
proaches according to the scale analysis.

2.2. Set of criteria adapted for multi-scale analyses

Hazard analysis is well established in the literature and planning
documents and operates through multiple spatial scales ranging from
global to local. Thus, hazard mapping of the gain of accuracy and more
details are integrated according to the spatial scale. However, in tra-
ditional EaR studies in which only one scale is considered, the spatial
accuracy is the same at each scale (simply zoomed in or vice versa)
(Table 1). Consequently, the EaR details are the same at each spatial
scale. In this context, the aim is to provide different sets of criteria to
describe EaRs according to various scale analyses with a goal of im-
proving EaR assessment methods.

Van Westen, Van Asch, and Soeters (2006, 2008) defined a four-
scale analysis for risk assessment from small (greater than 1:50,000) to
local (less than 1:10,000) scales. In the small-scale analysis, the accu-
racy is not sufficient to define the EaRs and distinguish the various
components of the territories. Consequently, this analysis scale is not
considered in this paper.

In the medium-scale analysis (from 1:50,000 to 1:25,000) (Fig. 2a),
the aim is to provide spatial information about all components and

Fig. 1. Synthesis of the identified EaRs and the criteria used for the 13 multi-criteria methods (expert approach) based on three hazard types: flood, landslide and
multi-hazard.

K. Graff, et al.



constraints of the study sites (overall analysis), such as protected areas
or agricultural surfaces. This scale analysis must provide global in-
formation about the main components of the territories, critical facil-
ities, future development of the territory or the main resources avail-
able in the area (Armaş, Ionescu, Gavriş, & Toma-Danila, 2016; Dilley,
Chen, Deichmann, Lerner-Lam, & Arnold, 2005). The use of one cri-
terion to characterize different EaRs in the territory (1. built-up area, 2.
roads and lifelines, 3. urbanized area and 4. agricultural and natural
surfaces) allows all EaRs to be pooled within the same analysis.

The purpose of the large-scale analysis (from 1:25,000 to 1:10,000)
(Fig. 2b) is to identify physical injury and structural and functional
impacts of infrastructure components (Carlier et al., 2017; Lissak,
Maquaire, Puissant, & Malet, 2013; Malet et al., 2006; Maquaire et al.,
2004; Puissant et al., 2013). These infrastructures are buildings and
transport-energy systems. In contrast to the medium scale, the focus of
this scale is to compare similar EaRs (infrastructures such as buildings,
roads, etc.) and to avoid over- or underestimation.

In this context, (1) physical injuries are defined based on the esti-
mated population by building (Chen et al., 2016; Kappes et al., 2012;
Kubal et al., 2009; Scheuer et al., 2011; van Westen et al., 2014) and
road traffic, (2) functional impacts are defined based on the economic
function of each building and the road and lifeline type, and (3)
structural impacts are defined by both the type and number of floors of
each building and by the number of lanes (road, highway, etc.).
Moreover, agricultural and natural areas are not taken into account at
this analysis scale, because the scale cannot consider the site specificity,
such as biodiversity, economic gain or loss or productivity by plot
(Ernoul et al., 2018; Ženka, Slach, Krtička, & Žufan, 2016).

In the local-scale analysis (from 1:10,000 to 1:2000) (Fig. 2c), the
aim is to obtain a better assessment of the structural elements related to
building. The focus of this analysis scale is to provide better information
about different forms of vulnerability (Kappes et al., 2012; Papathoma-
Köhle, Gems, Sturm, & Fuchs, 2017). Thus, for each building, five cri-
teria can be used to characterize the structure: (1) the construction

Fig. 2. Spatial and attribute accuracies of EaRs at three analysis scales with the same spatial extent.
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material, (2) the number of floors, (3) the construction type, (4) the
date of construction and (5) the building condition. These criteria,
which are complementary to the large-scale analysis, require the ac-
quisition of field data and should be limited to a few buildings (Lissak,
2012).

2.3. Geographical databases used in integration models

The use of multiple GDBs to identify EaRs at different scales is a
recent addition to risk analyses due to the development of multiple data
platforms and sources (Campelo, Bertolotto & Corcoran, 2017;
Johansson, Olofsson, & Mangold, 2017; Jokar Arsanjani, Mooney, Zipf,
& Schauss, 2015). These different platforms and sources represent an
alternative to traditional data collection from the field or photo-
interpretation (Ambrosi, Strozzi, Scapozza, & Wegmüller, 2018;
Defossez, Vinet, & Leone, 2017). In this paper, multiple GDBs were
integrated for the medium- and large-scale analyses, and local-scale
field data were promoted.

Three types of GDBs are available for open access or under condi-
tions (Table 2). The GDBs produced by national institutes are regularly
updated and controlled. Consequently, confidence in these GDBs is
particularly high.

The second type of GDB comes from (2) VGI (Bol et al., 2016; Foody
et al., 2015; Olteanu-Raimond et al., 2017), which is an open data
format, such as Open Street Map (OSM). Multiple associations or users
supply the GDBs produced by this institution. These GDBs are updated
in near real-time but require an audit before integration with other GDB
types.

The third type of GDB comes from archive documents available in
municipalities, such as the Local Urbanism Plan (PLU) or the
Intercommunal Local Urbanism Plan (PLUi). New platforms, such as
Geoportail Urbanism, are increasingly being developed. This platform
provides digitalized urban documents with geo-referencing and har-
monized data. The confidence in these data is high, but verification is
required when the data update is long-standing.

At the medium scale (1:50,000–1:25,000), (1) built-up areas and (2)

road and lifeline types are defined through the BD TOPO (provided by
IGN) and OSM databases (Table 2). For (3) urbanized areas, we assign a
higher importance to official urban documents (PLU/PLUi), which are
regularly updated but are not available for all municipalities. Munici-
palities without official urban planning are subject to National Urban
Planning Regulations. The MOS Normandy substitutes for urban docu-
ments when the municipalities are subject to the National Planning
Regulation. This database is available for Upper Normandy and is
provided by the Normandy region (last updated in 2009) to obtain in-
formation about land cover and land use. The (4) agricultural and
natural areas are defined based on four data sources. The agricultural
areas are defined with RPG, which provides information about the crop
type, and official urban documents define the boundaries of agricultural
surfaces. Natural and protected surfaces are defined with BD TOPO
and the INPN and CdL databases.

At the large scale (1:25,000–1:10,000), most information con-
cerning buildings, roads and lifelines is collected from BD TOPO be-
cause of the spatial accuracy of the database. The OSM database is also
used to complete the information obtained from BD TOPO . In the re-
sults, the function and type of buildings are defined using this combi-
nation of data sources. To define physical injury, the function of the
building and the number of floors must be known. In addition to these
datasets, a third database (INSEE) can be exploited to obtain informa-
tion about the number of people living in specific areas (200 × 200
tiles). Then, a weighting system can be used to estimate the population
per building (physical injury).

At the local scale (1:10,000–1:2000), data about the building con-
dition and construction material are gathered by photointerpretation or
field data acquisition. The spatial footprint of the building comes from
databases defined at the large scale. The construction date is available
in the CETE databases and is provided under conditions. A com-
plementary database is available concerning land prices at the com-
munal scale (notarial database) to estimate the costs or benefits of
buildings on the study sites.

Table 2
Sources and data used for characterization of the EaRs in the medium-scale (M), large-scale (L) and local-scale (l) analyses.

Range Source Data provided Updated M L l

Global Open Street Map (OSM) 1. Building (surface, function, type, name) 2018 ● ● ●

2. Land use (surface, type, name) 2018 ● ● ●

3. Natural area (surface, type, name) 2018 ●

4. Place (surface, type, name) 2018 ● ● ●

5. Network (type, name) 2018 ● ●

National (France) IGNa (BD TOPO ) 1. Traffic network (surface, type, name, state, etc.) 2017 ● ●

2. Lifeline (type, tension, operating) 2017 ● ●

3. Natural area (surface, type) 2017 ●

4. Building (surface, height, function, type) 2017 ● ● ●

5. Land use (surface, function) 2017 ● ●

CdLb 1. Protected area (surface, name) 2011 ●

2. Land cover (type) 2011 ●

RPGc 1. Agricultural plot (surface, type) [2007–2016] ●

INSEEd 1. Tiles_200 × 200 (population) 2010 ●

INPNe 1. Protected area (surface, type, name) 2017 ●

Notary/INSEE 1. Land price (value) 2018 ●

Regional CETEf 1. Building (surface, date) 2011 ●

MOS Normandyg 1. Land use (surface, type, function) 2009 ● ●

Local PLU/PLUih 1. Land use (surface, function) [2007–2018] ● ●

Field data and photointerpretation Building (Material construction, condition) 2018 ●

a IGN (National Geographic Institute).
b CdL (Coastal conservatory).
c RPG (Graphical Parcel Register).
d INSEE (French National Institute for Statistic and Economic Research).
e INPN (National Inventories for Cultural and Natural Heritage).
f CETE (Public Works Regional Engineering Centres).
g MOS Normandy (Normandy Land Cover).
h PLU/PLUi (urban planning documents).
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2.4. Integration models

Once all criteria are defined (2.2) and the dataset is identified (2.3)
for all analysis scales, the next step is the extraction, transformation and
loading of GDBs into a final data warehouse (Biljecki, Heuvelink,
Ledoux, & Stoter, 2018; Hanus, Pęska-Siwik, & Szewczyk, 2018; Yılmaz
& Canıberk, 2018). This step, which is called the ‘integration process’
(pre-processing, input data, processing, and output Figs. 3 and 4),
concerns only the medium- and large-scale analyses. Therefore, two
integration models are produced to obtain adapted data corresponding
to each scale. The first step (pre-processing) consists of delineation of
the study area and extraction of the associated database. Concerning
the input data shown in Fig. 3, the number following the source name
corresponds to the data provided in Table 2. Third, to initiate the
processing step and to automate data standardization, an extra pre-
treated file is added. Therefore, these models two models extract data
from database identify, transform (new classification) geometric pri-
mitives and/or attribute tables and load them in a final data warehouse.

For the integration model in the medium-scale analysis, thirteen
databases from seven sources are used (Fig. 3). The aim is to obtain (1)
built-up areas by simplification of attribute data and erosion-dilatation

of the spatial extent of buildings. For (2) roads and lifelines, the road
width information allows the spatial extent determined by the buffering
process to be defined. At this scale, only the type is used to characterize
the EaRs. The main difficulties concern (3) urbanized areas and (4)
agricultural and natural areas because of the importance of the in-
formation provided by each GDB. For each criterion, the cleaning
process consists of a visual check (photo-interpretation and field
survey) to identify possible inconsistencies between different attribute
fields in case of conflict between two information sources.

For the second integration model in the large-scale analysis (Fig. 4),
the native resolution has been kept for the spatial extent of buildings to
determine the four criteria (type, function, number of floors and esti-
mated population). The number of floors and estimated population
require complementary calculations. The type and function of buildings
are defined from five data sources. BD TOPO provides some of this
information and can be completed by the OSM database, urban docu-
ments or regional databases. For network characterization, the spatial
extent is the same as that of the medium scale, but more criteria are
integrated in the analysis. Thus, we focused on the types of roads and
lifeline, the number of lanes in each road and the traffic density. BD
TOPO provides all of this information.

Fig. 3. Integration model for the medium-scale analysis with primitive visual scripting tools (model builder under the GIS environment).
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To estimate the population of each building (for physical injuries),
we must define (1) the living space (m2), (2) number of floors, and (3)
building footprint. Some authors use a unique average floor height
value to identify the number of floors for all buildings (Martani,
Cattarinussi, & Adey, 2018; Zhao, Myint, Wentz, & Fan, 2015). BD
TOPO provides information about the minimal and maximum heights
of each building in the territory from photogrammetry (< 1 m accu-
racy). However, at our study sites, the height of the floors significantly
varies according to the building type. Therefore, we have used the
European standards defined by the Council on Tall Buildings and Urban
Habitat (CTBUH) to define the average floor height for different

building types (Table 3). For the maximum height based on the building
type and European standard, we have defined the number of floors by
dividing the maximum height by the average elevation of floors for
each building type.

For the criterion ‘estimated population by building’ (Logan, Stults, &
Xu, 2016), the INSEE database was associated with the total living
space of each residential house, apartment and mixed-use building
(Fig. 5). To obtain the living space, we have multiplied the number of
floors by the surface area for residential buildings (Azad, Morinaga, &
Kobayashi, 2018). Based on the population census, INSEE provides
GDBs based on the number of people living in a 200 m × 200 m mesh
size over all of the French territory. The population by mesh (i) has been
reassigned for each residential building according to the total living
space (Ls) of each building by mesh.

For the local-scale analysis, the CETE database has been used to
obtain the date of building construction at the three study sites. The
building condition and material construction have been acquired by
photointerpretation or field campaign for a few buildings in selected
areas according to their hazard proximity (Fressard, 2013; Letortu,
2013; Lissak, 2012). The spatial accuracy of the buildings and their
types are obtained from large-scale databases in the data warehouse.

Fig. 4. Integration model for the large-scale analysis with primitive visual scripting tools (model builder under the GIS environment).

Table 3
Average floor elevation (f) based on European
standards for different building types.

European standards f (m)

House 3.0
Apartment 3.1
Office 3.9
Mixed use 3.5
Other 3.1

CTBUH. 2015. Height Calculator. http://www.
ctbuh.org/.
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3. Study sites

Three study sites have been selected in French coastal environments
(in the Normandy region) with distinctive characteristics to test the
reliability and transposability of this method. These experimental study
sites are affected by a range of hazards and issues and are located on the
hedge (north-west) of the Parisian sedimentary basin. The first territory
extends from Houlgate to Honfleur and covers 149 km2 (Fig. 6). This
site is the interface between the Touques River and the sea in the cuesta
context. The average elevation is between 130 and 200 m with forma-
tion of a thick clavey-marly layer. The major problems of the first study
site are linked to flash flood issues (Delahaye, 2008; Douvinet, Mallet,
Escudier, Delahaye, & Christol, 2015) at the valley bottom, coastal and
continental landslides (Maquaire, 1990; Fressard, 2013; Lissak et al.,
2013) and marine submersions (Maanan & Robin, 2015; Letortu, 2013).

The second territory is east of Le Havre and extend from Quiberville
to Puys (161 km2). Three stream valleys (La Saâne Valley, La Scie
Valley and L'Arques Valley from west to east) are arranged in alter-
nating sequences with a chalky plateau (150 m altitude). Problems re-
lated to the second site are due to cliff retreat and rockfall (Maanan &
Robin, 2015; 2002; Dewez, Rohmer, Regard, & Cnudde, 2013; Letortu,
Costa, Bensaid, Cador, & Quénol, 2014), followed by the overflowed
river in the valley bottom coupled with storm submersion and the re-
lationship between the atmospheric pressure and climate indications
(Delmas, Cerdan, Cheviron, Mouchel, & Eyrolle, 2012; Laignel et al.,
2008; Turki, Laignel, Chevalier, Costa, & Massei, 2015). Lastly, runoff
at the river basin head regularly leads to flash floods (Douvinet et al.,
2015).

The third territory is east of Dieppe and extends from Criel-sur-Mer
to Ault (174 km2). This study site is similar to the second site and
contains the Yères Valley and La Bresle Valley from west to east. The
average altitude is between 100 and 120 m. This site has been the

subject of resettlement of people from an integrated risk management
perspective (Meur-Ferec, 2007). This type of management actually
leads to strong societal constraints with risk prevention plans at this site
(MATE/METL, 2016). In this third study site, the identified risks are
similar to those of study site n°2 (cliff retreat, flash flood, and con-
tinental and marine floods).

All three territories benefit from a large number of GDBs from na-
tional or regional public organizations (i.e., the BD TOPO databases),
research observatories and academic databases but have a lack of vis-
ibility concerning the spatial evolution of different hazards related to
climate change and the evolution of concomitant areas (Delmonaco,
Margottini, & Spizzichino, 2006; Marzocchi, Garcia-Aristizabal,
Gasparini, Mastellone, & Di Ruocco, 2012; van Westen et al., 2014).

4. Results

The results and margins of error of the two integration models will
be presented successively based on the analysis scale. The two models
are first developed at study site n°1. Then, they are validated by random
sampling with a 5% margin of error at the same site. Once the models
are validated, they are transposed to study sites n°2 and 3. The different
data warehouses produced from the two models can be used for mul-
tifunctional applications in terms of mapping, statistical analysis or
land use and cover analyses.

4.1. Integration processes in the medium-scale analysis: land use and cover
mapping

For the medium-scale analysis, thirteen databases are required to
cover the 484 km2 of the three studied territories. To provide simplified
EaR information, the built-up area has been classified into eight cate-
gories and represents 1.7% (site n°1) to 2.7% (site n°2) of the total land

Fig. 5. Calculation model for the number of floors and estimated population by residential building (house, apartment and mixed use).
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area. Seven categories have been defined for roads and lifelines that
represent between 1.8% and 2.3% of the total area. The average pro-
portion of urbanized area varies from 12% (site n°3) to 20% (site n°1)
and is defined in twelve categories. Natural and agricultural surfaces
represent proportions between 76% (site n°1) and 82% (site n°2) and
are divided into eight categories (Fig. 7).

The use of a unique GDB has proven insufficient to characterize all
of the EaRs. In the case of urbanized areas, urban documents (urban
plans) provide accurate information for residential areas (collective or
housing), urban centres or areas to be urbanized. All of these urbanized
areas represent 36% of the final adequate information (Fig. 7). To add
information for farms, administrative areas, industrial areas, commer-
cial areas, health centres and camps sites, BD TOPO has been essential
and has been associated with OSM databases to provide 64% of the
global information.

OSM databases are particularly accurate (type and function) in
highly urbanized areas, such as urban centres, and allow detection and
rectification of some erroneous data (cleaning process). For natural and
agricultural surfaces, urban documents provide information on
boundaries but are insufficient to define the crop type. Consequently,
the combination of the RPG and IGN databases provides information
about crop, forest, and hedge types and about protected areas with the
INPN and CdL databases (Fig. 8).

The temporal accuracy of the GDBs at the medium scale is directly
linked to database updates. Updates of urban documents depend on
municipalities. The IGN databases are upgraded every year, and the
OSM databases are updated every day. Consequently, medium-scale
databases must be easily and regularly updated. Prospectively, urban
documents integrate land reserves (areas to be urbanized) at 15-year
and 30-year terms, which enables predictions of future land use/cover
changes (Johnson & Iizuka, 2016; Stehman, Fonte, Foody, & See, 2018)
using non-random patterns. To ensure spatial accuracy, footprint data
from public institutions have been prioritized for the VGI and digita-
lized data.

The data validation is based on the attribute accuracy. To validate
EaR attributes, four EaRs have been identified (build-up, roads and
lifelines, urbanized areas, and agricultural areas), and several items
have been randomly selected. The number of chosen items is computed
according to Cochran's formula (2007) (5). Then, each sample is
checked by a field audit and photointerpretation with World Imagery
(ESRI) or using Google Street View (Google).

=Sample size
Z pq

e

²

² (5)

where e is the number of items, Z is the Z-score with a 95% confidence
level, e is the desired level of precision at 5%, p is the estimated pro-
portion of an attribute that is present in the population and q is 1-p.

Fig. 6. Locations of the study areas. These three study sites are prone to multiple hazards in urbanized areas located in the valley bottoms.

K. Graff, et al.



Regarding our results, the built-up area accuracy varies between
85% and 90%. Roads and lifelines have the best accuracy, with 100% of
the sample validated. Urbanized areas and agricultural and natural
surfaces have an accuracy greater than 90%. Consequently, the margin
of error of the data warehouse for the medium-scale analysis is below
10%, and the confidence degree is defined as sufficiently important for
use in multifunctional applications.

4.2. Mapping, integration process and assessment of the calculation model
for the large-scale analysis

At the large scale, the analysis is carried out for buildings, roads and
lifelines. Four criteria have been defined: the type, function, number of
floors and estimated population. The population is estimated for each
building type (2.4). Thus, particular attention is given to the building
type and function assessments to provide more accurate information.
The model was run and validated at study site n°1 before being trans-
posed to study sites n°2 and n°3.

To define the building types and functions, three GDBs have been
used at study site n°1 (BD TOPO , OSM databases and urban plans).
Due to the spatial accuracy of the BD TOPO database, it is used as a
basis for the final database (especially for the location and building
function items). BD TOPO provides type and function information for
5% of the 31,251 buildings identified at site n°1 (Table 4). By in-
tegrating the OSM databases, the degree of information increases by
30%. A first cleaning phase is performed at this point in cases with
conflicting information. For example, a building can be specified as an
industrial building in BD TOPO and as a commercial centre in the OSM
databases. Consequently, field validation is performed to correct the
final database (cleaning phase of the model in Fig. 4). Urban documents
(PLU/PLUi) can complete missing information by defining residential

buildings and specifying their types (housing or apartments).
It.1 is the first iteration with integration of the IGN databases, It.2 is

the second iteration with integration of the OSM and IGN databases,
and It.3 is the third iteration with integration of PLU/PLUi, OSM and
BD TOPO .

For study site n°1, the height is missing for 5426 building (17% of
the global data). The margin of error (root mean square error (RMSE) 6)
of the estimated population calculation (2.4) has been defined by
comparison between the observed and predicted numbers of floors for
381 buildings.

=RMSE
Fo Fp

n

( )²

(6)

where Fo is the number of floors observed, Fp is the number of floors
predicted and n is the total amount of sample.

With this calculation model, 80% of the supplied information is
accurate (Table 6), and the number of floors of one building tends to be
overestimated with an RMSE at 0.78 (Fig. 9). Hence, the calculation
model can be improved but is considered reliable enough for use at this
analysis scale.

Once these criteria have been defined, the number of people in a
200 × 200 m mesh from INSEE are distributed in residential buildings
according to their living space (Fig. 10). Roads and lifelines are ex-
tracted from BD TOPO and are incorporated precisely in the medium-
scale database.

Similar to the medium-scale analysis, data from the large-scale
analysis are validated with randomly picked items, and the sample size
has been defined with Cochran's formula (5). At this scale, the audit
covers the criteria linked to buildings. The confidence degree of BD
TOPO concerning roads and lifelines is considered sufficiently im-
portant (Table 5) but has not been double checked. Furthermore, no

Fig. 7. Cumulated surface or linear areas for the four EaR types identified at the three study sites in coastal environments from thirteen GDBs.
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data are available for the estimated population, and verification of this
information is particularly complex because of the impossibility of
determining the exact number of people per building in the field. This
information is recorded in city halls but is not disseminated. Therefore,
this criterion cannot be verified.

In view of the obtained results, the type of building has an accuracy
between 85% and 90%. The economic function has better accuracy at
greater than 90%. The number of floors is the least accurate with 80%
of the sample validated. Consequently, the margin of error of the data
warehouse for the large-scale analysis is approximately 13% and is
considered sufficiently accurate.

Fig. 8. Spatial representation of the databases for the medium-scale analysis at study site n°1.

Table 4
Attribute validation of the data warehouse for the medium-scale analysis with a
margin of error of 5%.

Element at risk Built-up Roads
and
lifelines

Urbanized
areas

Agricultural
and natural
areas

Total

Number of items 23,978 9117 1129 7441 41,665
Sample size 379 369 287 367 1402
Validation 336 369 260 339 1304
Non-identifiable* 25 0 12 0 37
Error 43 0 27 28 98
Validity 88.7% 100.0% 90.6% 92.4% 92.9%
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4.3. 3D mapping of structural components in the local-scale analysis for
EaRs located in hazard-prone areas

The third scale concerns the analysis of EaRs at a local scale and
focuses on structural aspects of the buildings. This analysis must be
carried on few elements that are highly sensitive to various processes
(flood, landslide, etc.) and consequently occur in hazard-prone areas. At
study site n°1, plans for natural risk prevention have been used to
identify the number of sensitive EaRs. Of the 31,251 buildings, 13,142
(42%) are located in hazard-prone areas. Among them, 8685 (28%) are
affected by landslides, 4197 (13%) are located in flood zone areas
(Fig. 11) and 260 (1%) may be affected by both flood and landslide
hazards.

The model was applied to study sites n°2 (Fig. 12) and n°3. In fact,
all municipalities in study site n°1 have harmonized urban documents
(PLU/PLUi). Only 4 out of 21 PLU/PLUi at study site n°2 and 2 out of 23
are found at study site n°3. An alternative solution has been found to
replace missing PLU/PLUi with other GDBs. The MOS Normandy da-
tabase produced in 2009 at the regional scale provides the data sources
for the two other study sites. The transposition of this model and these
tools can be considered for other coastal or continental sites but re-
quires adaptation of local GDBs.

5. Discussion

The results from the data models at the medium
(1:50,000–1:25,000) and large scales (1:25,000–1:10,000) depend lar-
gely on the spatial resolution and accuracy of the input databases. At
each of three study sites, the level of accuracy of the input dataset is
considered according to the geometry delineation and data attribute
precision, database completeness, importance of the provided in-
formation, and semantic and temporal accuracy (Girres & Touya, 2010;
Kresse & Fadaie, 2004). In the case of volunteered geographical in-
formation (VGI), such as the Open Street Map (OSM) databases
(Haklay, 2010), there are offsets in the spatial footprint (Brovelli,
Minghini, Molinari, & Zamboni, 2016) but good attributes and temporal
accuracy due to regular updating by users. To resolve this issue, the

geometry accuracy of BD TOPO has been used as a reference, because
it provides highly accurate building, network and natural surface lo-
cations (Betaille, Peyret, Ortiz, Miquel, & Godan, 2016). Then, spatial
information from other databases has been integrated into BD TOPO .

The results of our medium-scale analysis model are satisfactory
(> 90%) due to harmonized intercommunal urban documents (last
updated in 2012) for the whole of study site n°1. This accuracy will tend
to decrease according to the availability and time validity of these
documents at other study sites. The results concerning built-up areas
(15% uncertainty) are mainly linked to erosion followed by expansion,
which are partially generalized and can generate mistakes in attributed

Table 5
Number of buildings by type and function at study site n°1 at different integration phases.

Criterion 1 (type) It.1 It.2 It.3 Criterion 2 (function) It.1 It.2 It.3

House 0 0 13,101 Residential 0 0 19,630
Apartment 0 0 6525 Commercial 57 250 250
Office 0 126 126 Industrial 985 1009 1009
Farm 169 215 215 Farm 169 215 215
Industry 985 1009 1009 Administrative 26 72 72
Mall 57 125 125 Education 68 68 68
Castle 31 40 40 Health 0 37 37
Church 37 66 66 Tourism 0 219 219
Monument 27 27 27 Energy 188 188 188
Station 2 2 2 Leisure 0 164 164
Warehouse 0 3315 3315 Transport 2 2 2
Tower 7 7 7 Garage, shed, etc. 0 9331 9331
Complex 23 164 164 Religion 37 66 66
Shed/hut 12 6530 6529 Unknown 29,719 19,630 0
Unknown 29,901 19,625 0

Table 6
Determination of the confidence level of GDBs for the large-scale analysis (building) with a margin of error of 5%.

Element at risk Building (type) Building (function) Building (number of floor) Building (estimated population) Total

Number of items 31,319 31,319 31,319 ND 31,319
Sample size 381 381 381 ND 1143
Validation 339 349 307 ND 995
Error 42 32 74 ND 148
Validity 88.9% 91.6% 80.6% ND 87.1%

ND is non-documented.

Fig. 9. Differences between observed and predicted floors for 381 buildings.
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data (particularly in highly urbanized areas). In the large-scale analysis,
uncertainties mainly concern computation of the number of floors (20%
uncertainty). In addition, this uncertainty increases if cellars are con-
sidered (actually, none of the data provide this information, because the
method used to compute the number of floors concerns exclusively
aboveground elements). The criteria concerning the building type and
function and the roads and lifelines are high (≥90%) due to merging of
the OSM and BD TOPO databases. Concerning building characteriza-
tion, the highest density of urban areas increases the accuracy of this
attribute thanks to the VGI databases. In the local-scale
(1:10,000–1:2000) analysis, data are collected in the field, through
photointerpretation or using software (such as Google Street Map), and
thus the confidence degree is highest.

The main challenge of our study is the standardization phase of the
various databases. This step is crucial for the models. For the medium-
scale model, thirteen databases are needed to extract, transform and
load the final data warehouse (Johansson et al., 2017), and seven da-
tabases are needed for the large-scale model. Generally, this standar-
dization phase is based on Urban Atlas, Corine Land Cover, OSM or
GMESUA standardization (Campelo et al., 2017; Jokar Arsanjani et al.,
2015). However, these terminologies are adapted to define land use or
land cover in the small-scale analysis, and adaptation is necessary to
describe EaRs at the medium, large and local scales. Furthermore, one
EaR has one or more criteria, and an increased number of criteria for
the same element enhances the complexity of the integration phase.

Checking whether the information provided for specific criteria is
sufficiently precise or requires an upgrade with another database

represents a difficulty. To check the correct connection between the
input and upgraded data, defining the order of the execution model is
fundamental. This step includes knowing the degree of information and
importance provided by each database. For example, urban documents
(PLU/PLUi) provide the first information for agricultural areas, but no
information is given about the agriculture type. The RPG database
provides information on the use of individual agricultural plots
(Cantelaube & Carles, 2014) through volunteered geographical in-
formation. The combination of these two databases provides informa-
tion about the official limit of the agricultural area, limit of the plots
and type of agricultural plots.

Once integration and transformation are completed, a verification
and cleaning process is performed to avoid inconsistencies or missing
information. This phase is more complex for the large-scale model than
for the medium-scale model due to the number of criteria that need to
be checked. In certain cases, conflict exists between information pro-
vided from two different databases. For example, BD TOPO may have
identified the function of a building as an industrial building, while the
OSM database indicates that this industrial building is actually a
shopping centre. Therefore, the verification requires further analysis by
field observation, photointerpretation or use of software, such as Google
Maps or Google Earth. After this phase, the degree of confidence for all
data produced must be assessed according to verification of the margin
of error. The random sampling process (Cochran, 2007) has shown than
the margin of error is below 10% at the medium scale and is approxi-
mately 15% at the large scale. Consequently, the confidence degree of
the produced data is defined as sufficiently important for use in

Fig. 10. 3D mapping for the large-scale analysis with different criteria for a portion of study site n°1.
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multifunctional applications and by multiple users.
The time validity of GDBs is a recurring issue in the literature

(Devillers & Jeansoulin, 2006; Zhang et al., 2018). This question
highlights the problem of upgrading and managing spatial data (Fonte
et al., 2017). Near real-time systems have begun to be developed
(Yılmaz & Canıberk, 2018) but require significant resources and will
depend on the type of data integrated. At the three study sites, the OSM
databases are updated every hour and are the closest source of near
real-time data. BD TOPO is updated every year (Girres & Touya,
2010), and the other databases are updated every two years, five years
and more for urban documents. This question of updates will directly
impact risk assessment and management. As shown in Fig. 12, buildings
destroyed during the summer of 2013 (Michoud et al., 2015) appear on
orthophotographs from 2012 but are missing from the 2017 version of
the GDBs. The two models presented at the medium and large scales
have been planned for relatively fast and easy upgrades. The main
constraint and time spent updating will be linked to the standardization
or transformation phase in the case of a new element to be in-
corporated. These models are optimized for annual updates.

The replicability of models at study sites n°2 and n°3 have be ap-
plied quickly. The main difficulties are related to integration of new
databases at the medium and large scales that do not exist at study site
n°1. Furthermore, unlike those of study site n°1, urban documents are
not harmonized at study sites n°2 and n°3. Only four of twenty-one
urban documents at study site n°2 and two of twenty-three at study site
n°3 were available. Other communes were found in the National Urban
Planning Regulation. Therefore, the MOS Normandy database has been
used to make up for the absence of these urban documents. For study
site n°3, eleven of twenty-three communes are located in other de-
partments and have no urban documents. Therefore, the CdL database,

which provides information about land cover, has been used to fill the
data gaps, and then the type of urban area has been identified by
photointerpretation. Similar to the data updates, the main difficulty in
transposing the models is the standardization and transformation of the
input data. A complete inventory of datasets available for the study sites
and their quality is required before executing the models.

In other countries, the replicability of the methods will depend on
the amount of data available. In Europe and Greenland, forty-one na-
tional agencies have been identified (Olteanu-Raimond et al., 2017)
that acquire topographic data, such as the National Geographic Institute
of Belgium or National Land Survey of Finland. The combined use of
national and VGI databases (Bol et al., 2016) will significantly increase
the accuracy of the data even more if the countries have data in ad-
ministrative units with urban documents.

6. Conclusion

The geographical database produced from institutional, volunteered
geographic information and archive sources allowed elements at risk
analysis at three scales. Analysis at the medium scale shifted the em-
phasis to surface analysis, which compared different elements present
at the same site on the same basis. Large-scale analysis adds additional
information about infrastructure to the analysis based on integrated
physical injury of people in each building and the functional and
structural aspects. Finally, the local-scale analysis takes into account
intrinsic parts of the infrastructure by integrating material construction,
surroundings, date of construction, etc. Therefore, these GDBs are set
for multifunctional usage through a series of spatial or attribute re-
quests for extraction of 2D or 3D maps or statistical elements.

In the medium-scale analysis, the elements at risk are characterized

Fig. 11. EaRs identified in flood zone areas for a 1.2 m water level at the local scale.
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using four criteria (type) with uncertainties of less than 10%. In the
large-scale analysis, the uncertainties are approximately 15%. In the
local-scale analysis, no uncertainties exist, because the data are col-
lected from field observations, photointerpretation or using software
(such as Google Street View). Consequently, determining the confidence
degree of each data warehouse for different analysis scales is suffi-
ciently important prior to their use in potential consequence analyses.

From these GDBs, the objective will be to set up an index from
criteria obtained using a weighting system, such as the Potential
Damage Index (Maquaire et al., 2004; Malet et al., 2006; Puissant et al.,
2013; Carlier et al., 2017), Relative Vulnerability Index (Kappes et al.,
2012; van Westen et al., 2014) or fuzzy logic method (Thiery, 2007;
Castillo Soto, 2012; Grekousis & Thomas, 2012; Fressard, 2013; Potter,
Doran, & Mathews, 2016). This quantification will serve to assess po-
tential consequences at the three study sites a priori of hazard-prone
areas. Finally, these potential consequences will be coupled with vul-
nerability analysis for each type of hazard in a multi-risk analysis ap-
proach (Chen et al., 2016; Godfrey et al., 2015).

Finally, this method can be transferred to technical services for risk
analyses to increase the assessment of elements at risk in the Risk
Prevention Plan (PPR in France). The quick installation of this method at
different study sites supports the integration of physical, infrastructural

and functional components.
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